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AN ENGINEERING APPROACH 
TO BLAST RESISTANT DESIGN 

N. M. Newmark*, Member, ASCE 

Summary 

The field of structural dynamics is relatively new.   It is therefore under- 
standable why practically all of the work that has been done to date on the 
subject of the resistance of structures to atomic blast, has been concerned 
primarily with the analysis of the response (i.e. deflection) of a particular 
structure subjected to a given loading.   This approach is mathematically 
very attractive, and the writer has contributed a number of methods of his 
own.   However there are two important reasons why the calculation of deflec- 
tion of a given structure, subjected to a given blast, is not very satisfying 
from an engineering point of view: 

(1) The structure to be designed does not yet exist, therefore needless 
complication in the analysis merely lengthens the time it takes to select a 
structure for analytical trial.   The real problem is the preliminary choice 
of the structure to be analyzed.   If this can be done intelligently, the further 
analysis may actually be unnecessary. 

(2) Even minor variations and uncertainties in the details of the blast 
loading or in the properties of the structure (such as yield point, stiffness, 
etc.) cause major changes in the computed structural response.   This fact is 
not immediately evident from the usual detailed descriptions of analytical 
techniques, but it can readily be demonstrated.   Consequently, the customary 
type of analysis may be grossly misleading.  The designer is concerned not 
with what does happen in specific circumstances but with what might happen 
under a range of circumstances, and with the probability of the occurrence 
of the phenomena in question. 

For these reasons the writer presents without apology the relatively crude 
approximations in this paper as a means of arriving at a design reasonably 
quickly and simply.   For a preliminary design of either a structural frame, 
or component parts such as wall covering panels, one needs to make an esti- 
mate of the natural period of vibration of the component relative to the dura- 
tion of the loading on the component, and the ductility factor or the ratio of 
the desired limiting deflection (preferably for "collapse") to the yield point 
deflection.   Extremely accurate values are not required.   From these esti- 
mates, one determines readily from the approximate relations herein the 
required "limit load " or yield resistance of the structure for a given exter- 
nal pressure or size of bomb, etc. 

In other words, the procedure develops essentially an equivalent static 
loading (or resistance) for which the design must be made.   Since this is a 
concept familiar to structural engineers in general, the procedure can be 
followed in almost any design office. 

♦Research Professor of Structural Engineering, University of Illinois 
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The inexperienced designer may have to make a revision in his estimate 
of the basic parameters after the preliminary design is complete.   This can 
easily be accomplished, however.   Finally, after the design is completed a 
calculation may be made by numerical procedures or other methods if more 
apparent precision is desired in. the estimate of deflection corresponding to 
the selected loading, or for other loading conditions. 

Basic Considerations 

The designer must choose first the conditions governing the design.   He 
I     may wish to make the structure adequate to resist the blast forces from the r. 
W detonation of a given size of bomb at a given radial distance and a given 

height, or he may select several alternatives and insist that the structure be (■ 
adequate for any of them.   The designer may also select, merely as a stand- 
ard criterion, a given shape of blast pressure-time curve, with specified 
values of peak pressure and duration of the positive phase of the pressures. 

The relations among these various blast parameters are described in 
detail in Reference 1 and in papers by Lampson (Ref. 2); and by Reines, 
Bleakney, and Merritt (Ref. 3). 

There is no real advantage to be gained in designing for a particular size 
of bomb, which implies a particular shape of pressure-time curve.   There 
is, however, a good deal of advantage in considering a conventionalized load- 
ing so as to insure a uniform factor of safety against collapse in all the parts 
of a given structure, or in all the structures in a region.   This is the stand- 
ard approach used in design for earthquake resistance (Ref. 4) or to resist 

y wind loads. 
The type of overpressure-time curve developed in a blast is shown in 

Fig. 1 by the solid curve labeled ps.   This can conveniently be replaced by a 
corresponding linear curve varying from a maximum pressure p0 to zero in 
a time ts slightly less than t0.   For most structures it is convenient and not 
inaccurate to neglect the negative phase of the blast beyond to. 

The next choice to be made is that of the type of structure, whether it is 
to be completely enclosed with a covering which resists the blast forces and 
thereby shields the interior of the building, or whether it is to be essentially 
open, possibly covered with light, frangible siding that permits the blast to 
enter and pass through the structure.   The forces acting on the structure and 
on its component parts differ greatly for these extreme types. 

Of course, the structure may be intermediate in type with resistant cov- 
ering having openings or windows which permit the blast to enter in part. 

Finally, the designer must make a decision as to what point in the range 
of the behavior of the structure he wishes to consider as the maximum per- 
missible response for the other selected conditions.   He may choose to have 
the structure remain elastic (but only rarely because of the extremely heavy 
construction required), or he may choose to permit the structure to deflect ' 
to the point of imminent collapse, or he may select some intermediate range. 
In most cases, design for collapse is reasonable, since a factor of safety may 
be already implied in the choice of the pressure curve for which the design is 
to be made.   This choice has to be made independently for the different parts 
of the structure, as the conditions are different for wall panels, structural „ 
framing members, and shear walls, for example. 

This discussion dodges the question as to what constitutes "collapse"; this 
is a topic which requires a good deal of discussion.   However, the writer 
would consider this as the point of complete failure of the structure or com- 
ponent, in general, in order not to overload the procedure with compounded 
factors of safety in too many hidden places. 

306-2 

■■■ 



When these various choices are made, the procedure leads to the compu- 
tation of the yield-point resistance required (or possibly the peak overpres- 
sure required for the given yield resistance)). The designer must recognize 
that factors beyond his control governing the blast pressure, duration, struc- 
tural properties, etc., may make his computed value uncertain by as much as 
25 percent.   However, nothing that he can do, particularly in refining his cal- 
culations, can reduce this uncertainty.   It is inherent in the problem.   Only 
complete and accurate physical tests on the completed structure, and com- 
plete and accurate pressure measurements during the loading of the structure 
by blast, can permit a more accurate calculation to be made. 

This means that a structure designed barely to resist collapse may suffer 
only slight plastic deformation, or conversely, in the extreme case of varia- 
tion. Account can be taken of this phenomenon in selecting the actual design 
in order to insure safety if an unusual degree of assurance is necessary. 

It is clear from the foregoing reasoning that the uncertainty in the deflec- 
tion, reached by a given combination of loading and structural resistance, is 
very much greater than the uncertainty in the pressure level (or in the required 
resistance).   For this reason, throughout this paper, attention is focussed on 
the load or resistance required to reach a desired deflection which may or may 
not be achieved or exceeded. 

Blast Loading on Structures 

Reference has already been made to the free stream or side-on overpres- 
sure curve, in Fig. 1, which corresponds to the condition when no structure 
or other object interferes with or causes diffraction of the shock wave in the 
blast.   Accompanying this and dependent on it, there is a particle motion of 
the air which exerts a dynamic pressure or "drag" force on objects which 
interfere with the flow of air.   It is convenient in the following discussion to 
consider the drag pressure as corresponding to a drag coefficient of unity. 
It is also convenient although perhaps not entirely accurate to consider that 
the drag pressure at any instant has the value it would have if the overpressure 
ps at that  time were a steady-state value. 

With these assumptions the value of pd can be approximated by the relation: 

pd = 0.024ps
2/ (1 + 0.01ps) = 0.022ps

2 U) 

Equation (1) is adapted with only minor modification from Reference 5. 
The solid curve marked pd in Fig. 1 shows the time variation of drag pressure 
corresponding to the values of ps.   In general, however, the drag pressure- 
time variation can be approximated by a straight line from the initial peak 
value to zero at a time td which is 0.5ts. 

Diffraction-Type Structures. 
When the shock wave from the blast encounters an obstacle such as the 

rectangular block in Fig. 2, the pressures on the block are related to, but 
different from, the pressures in the curves of Fig. 1.   Immediately upon 
striking the front wall the pressure in the shock is increased by reflection, 
and the net reflected overpressure pr is given by the relation: 

pr/ ps = 2 + ps/ (17.2 + ps/ 6)  :'-.~-r?tr   ': U'   '' '"'"'"   ' (2) 

or without serious error, for ps less than 40 psi, 

pr = ps (2 + ps/ 20) (3) 
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As the shock traverses the building, the pressures change.   The high 
pressure air trapped in front of the face of the building spills around and over 
the building permitting the pressure to drop.   The time for the drop to occur 
is dependent on the smaller of the two quantities H or B/2, designated by S, 
the least distance from the "stagnation" point on the front face of the struc- 
ture, to an edge.   In Reference 5, several conventionalized relations are 
given for the net front face pressure.  The curve shown extending from pr in 
Fig. 2 is a representation of the results with slight amendments as indicated 
by the studies of Bleakney and Merritt in Reference 3.   This curve indicates 
the pressure as dropping to a value which is the sum of the side-on pressure 
plus a drag coefficient for the front face (cf) multiplied by the drag pressure 
in a time 3S/U where U is the velocity of propagation of a disturbance in the' 
shocked air, but which is taken herein for convenience as the shock front 
velocity also, and may be taken without introducing serious error in the re- 
sults as about 1500 ft. per sec.   More accurate values can be determined 
from standard text books or from Reference 1.   The true value may range 
from 1130 ft. per sec. to upwards of 2000 ft. per sec. for strong shocks.   How- 
ever the undertainty in the other quantities appearing in the relations in which 
U appears makes it really unimportant to determine U precisely. 

On the rear face the shock reaches the face at a time L/U later than that 
for the front face, and the average pressure on the rear face, directed rear- 
ward, changes in an increment of time of approximately 5S/U to a value cor- 
responding to the side-on pressure less the drag coefficient for the rear face 
(cr) multiplied by the corresponding drag pressure.   These quantities are 
shown in Fig. 2 with a prime to indicate that they are measured from a dif- 
ferent origin in time L/U later than the curves for the front face. 

The difference between the forward pressure on the front face and the 
rearward pressure on the rear face is shown by the shaded area in Fig. 2, 
and by the solid curve in Fig. 3, up to the time fj when the net translation^ 
force on the building reaches zero.   However, if L is small, the pressure on 
the rear face never gets larger than that on the front face, and the whole 
building experiences a forward drag.  Since p'd is very nearly the same as 
pd if L/U is small compared with td, then the drag coefficient Cd is the sum 
of cr and cf.   The dash-lined curve in Fig. 3 indicates the appearance of the 
net translational force in this case.   In general it is suggested that values of 
cf and cr be taken as 0.8, and C. as 1.6, unless experimental values are 
available. 

Except for the tail end of the curve where long-continued drag exists  the 
diffraction around the building leads to pressures which can be approximated 
reasonably well by a single triangle, as shown by the dot-dash line in Fig  3 
extending from pr to zero in a time th where t, is given by the approximate' 
relation: x 

t! = (L + 4S)/U - L (L + 10S)/ 2U2ts (4) 

Equation (4) is valid only if Uts is greater than 2L + 10S. A better value 
of tj can be obtained by plotting the curve of net loading as in Fig. 3 but the 
value given in equation (4) is generally adequate. 

For the pressure on a wall, the curve for the front wall of the building  in 
Fig. 2, can be used.   If the sloping line is extended down to the base line  a 
value of tx can be obtained.   This will be in general dependent on the pres- 
sure level.   No more refinement is usually necessary because of the fact that 
maximum deflection in the wall panels of a building will usually occur very 
quickly, and consequently, the duration of the pressure is long enough so that 
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changes in the duration are not significant.   An approximate relation for the 
corresponding value of 4 = tf for a front wall panel is the following: 

tf = 6S/ (U + 3S/ ts) (5) 

Since any wall may be exposed directly to a blast, the design conditions 
for all wall panels should be taken as the same.   Also, the roof slab may be 
exposed to a force from a detonation above the roof, so that it too is exposed 
to reflected pressures.   However, if it is clear that the roof is never exposed 
to such a condition, a value of p0 can be used instead of pr for the roof pres- 

Some data on the pressure to be expected on the roof for such conditions 
can be obtained from the report by Bleakney in Reference 3.   As a very crude 
approximation, however, one can take the pressures as given approximately 
by the maximum value of p0, with a duration as indicated by equation (5). 

Drag-Type Buildings, 
—For an open structure with only beams, columns, trusses, or other mem- 
bers with only small area opposing the blast, each of the members receives 
an impulsive loading as the blast engulfs it, and each member is then exposed 
to drag from the wind accompanying the blast.  Because the blast is trans- 
mitted through the building in a finite time, the net translational force increas- 
es in general until all or nearly all of the building is engulfed.   However, the 
impulse from the diffraction around each member produces a spike on the net 
force diagram as the blast reaches that particular member.   Unless the build- 
ing is extremely brittle, and fails without plastic deformation, it is reasonably 
accurate to consider that the building is subjected only to drag, neglecting the 
impulse spikes, but to compensate for this, consider that the whole building is 
engulfed at once. 

This assumption leads to a net pressure on the projected area of each of 
the elements corresponding to the drag pressure multiplied by the drag coef- 
ficient for the individual members.   The basic recommended pressure curves 
for use in design are shown in Fig. 4 for both diffraction-type and drag-type 

buildings. . . ...       , 
The drag coefficients to be used should take into account the shielding of 

elements by others placed a short distance away.   However, if the distance 
between parallel elements is more than 10 times their width, the shielding is 
probably negligible.  Reference 5 indicates drag coefficients of about 2 for 
structural shapes, about 1.25 for box-shaped elements or for flat plates, and 
about 0.8 for cylinders.   In the absence of better information these values can 
be used. 

In Fig. 4, the value of pdo is obtained from Equation (1) when ps = p0. 

Partly Open Buildings. 
The question of buildings with resistant- walls but with openings in the walls 

is a difficult one. Any comprehensive treatment would be beyond the scope of 
this paper.   However, the following approximate treatment is suggested. 

When the area of the openings is more than about 50 per cent of the area 
of the walls consider the building as a drag type building.   This approach was 
suggested in Reference 5.   In this reference, it was also suggested that where 
the area of the openings is less than 5 percent of the area of the walls, the 
building can be considered as completely closed. 

For intermediate conditions, the magnitude of the pressure that gets 
through the opening must be considered.   It is suggested, however, that in 
lieu of a better approach, a direct interpolation be made for conditions where 
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the openings are more than 5 percent and less than 50 percent of the wall 
area, the interpolation to be made both for maximum pressure and for dura- 
tion. 

Structural Resistance 

The relation between load and deformation, or between resistance and 
deflection, of a structure or structural element may take any of a number of 
forms.   It is convenient to define the structural resistance r in the same terms 
and in the same units as the external loading p.   Then the relations between r 
and x may be indicated as in Fig. 5, where x is either a particular deflection, 
an average deflection, or a parameter which defines all of the deflections in 
terms of some mode shape. 

In Fig. 5(a) there are shown a brittle and a ductile resistance curve.   The 
former is defined by the fact that failure occurs in or near the linear range 
of the load-deflection relation. 

When heavy dead loads or other large vertical forces in a structural frame 
deflect laterally they produce moments and stresses in the frame.   These re- 
duce the ability of the frame to resist lateral load.   The effect is proportional 
to the deflection, and may be approximated on the resistance-deflection curve 
as shown by the dotted line in Fig. 5(a).   The equivalent or effective resistance- 
deflection curve is the difference between the original curve and the dotted 
line.   Consequently, the effective curve may have a net downward slope after 
yielding occurs and may even drop to zero resistance for a large enough de- 
flection, at which point the structure would collapse physically of its own 
weight. 

In Fig. 5(b) there are shown conventionalized curves which represent the 
behavior of a variety of structures.   The figure shows (1) a work-hardening 
relation in which the resistance increases with increasing deflection beyond 
the first yielding, (2) an elasto-plastic relation with an ideal plastic constant 
resistance after yielding, and (3) two unstable relations with decreasing resis- 
tance after yielding.   These may arise because of the effect of vertical loading. 

In Fig. 5(c) a work hardening curve and an unstable curve are both approxi- 
mated by equivalent elasto-plastic curves to give the same maximum deflec- 
tion.   It is shown later that the equivalent curves can be stated in fairly con- 
venient form, and therefore it is only necessary to consider in detail the 
behavior of idealized elasto-plastic structures in order to obtain a rational 
analysis of practically any structure. 

Finally, in Fig. 5(d) there is shown a typical resistance-deflection relation 
for an element that yields in successive stages, as for example a fixed-end 
beam.   In such a structure the initial elastic relations apply up to the point 
where plastic behavior begins at the fixed end.   Then beyond this point, the 
structure behaves for additional load as if it were hinged at the end, and the 
slope of the load-deflection curve is correspondingly greater than in the ini- 
tial state.   Finally, the beam yields also at the center and cannot carry a 
greater load.   The limit resistance q is clearly defined; it is the maximum 
resisting capacity of the structure.   However, it is less convenient in general 
to work with polygonal relations such as the one shown.   Therefore an equi- 
valent elasto-plastic relation is used, as shown by the dashed curve, with the 
proper yield point q, but with a fictitious yield deflection xe which is chosen 
so that the area under the equivalent curve is exactly the same as that under 
the original curve, so that the energy stored is the same in both cases. 
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Required Resistance 
for Elasto-Plastic Structures 

We have standardized or conventionalized our problem to the point where 
we have a structure with an equivalent elasto-plastic resistance-deflection 
relation loaded with a pulse loading having a maximum value pmax at time 
t = 0 and a duration 4.   (Or td, etc.)  The yield resistance q is stated in the 

same terms as pmax- ^ 
The deflection has not been completely specified, nor do we need to spe- 

cify it    We must only be sure that the maximum desired deflection or the 
collapse deflection xm is measured in the same units and at the same point 
or points as the yield deflection at the knee of the curve, xe.   The ratio of 
the maximum to the yield deflection is defined as the ductility factor p.   For 
a completely brittle structure fl = 1.0, for moderately brittle structures 
H = 3 to 5, for moderately ductile structures ju= 10 to 30, and for very duc- 
tile structures fl is greater than 40. .. ,   ,_ 

Now we need only one other quantity to specify the essential character- 
istics of the structure or the component element.   This is the natural period 
of vibration T.   However, we must use the period corresponding to the stiff- 
ness of the equivalent elasto-plastic structure, as defined for example by the 
dashed line in Fig. 5(d) rather than as defined by the initial slope of the resis- 

tance curve. . 
The effective period is readily obtained from the period in the initial 

elastic stage by multiplying the latter by the square root of the ratio of the 
slope of the equivalent elastic resistance to that of the initial elastic resis- 

Standard procedures are available for the calculation of the period of the 
structure in its initial elastic state, either analytically or by numerical 
means.   Again, only an approximate value is required. 

With the simplifications outlined herein, the structure is essentially re- 
duced to an equivalent simple one-degree-of-freedom system.   Solutions of 
such systems have been obtained for a number of types of loading and for 
various types of resistance curves.   Some of the results are given in 
Reference 6 in the form of charts.   A simplified chart based on Reference 6 
is given as Fig. 6.   This chart relates the ductility factor or the ratio of 
maximum to yield deflection, the relative duration of the loading to the natural 
period of the structure, the ratio of the structural resistance to the peak load- 
ing   and the ratio of the time to reach maximum deflection to the natural 
period.   The first of these quantities is plotted as horizontal lines with a 
logarithmic spacing, the second as vertical lines also with a logarithmic 
spacing, the third as lines sloping generally up to the right, and the fourth 
as dashed lines sloping generally down to the right.   If any two of the quanti- 
ties are given, the other two can be obtained. 

For example, if tx/ T = 2.0, and fi = 20, then it is readily found that: 

q/Pmax = °-6andtm/T = 1-7- 
Approximate equations for the items of interest are given later in this 

paper. 
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te/T = 0.226 (q/p) 

Acceleration, Impulse, Momentum, and Energy 

The relations governing the motion of a simple system can best be explored 
on a plot of the accelerations of the system as a function of time, as in Fig. 7. 
The accelerations produced by the external loading p are plotted as the tri- 
angle on the left hand side of the figure.   The negative accelerations produced 
by the resistance r then are shown as the curve rising to a maximum and 
remaining constant after a time te.   The part of the curve that is not known is 
the initial part of the resistance-time curve.   This can be obtained by an itera- 
tive process, or it can be approximated quite readily as described in the 
paper by Newmark in Reference 2. 

Now the value of tm is obtained by the condition that the velocity at this 
time is zero. As a consequence the net area between the curves must bal- 
ance, or 

Al + A2 = A3 

This means also that the area under the pressure curve and that under the 
resistance curve, between the origin and the time of maximum displacement, 
must balance.   Further, the moment of the couple formed by these equal areas 
is equal to the maximum displacement. 

When tj is very small, it doesn't matter what the shape is of the load-time 
curve; so long as its impulse is constant the maximum deflection and the 
time to reach it will be the same. 

In order to take account of the speed of loading of the material, it is neces- 
sary to formulate an expression for the time to reach yielding.   This can be 
done .by making use of the observation that the yield displacement xe occuring 
at time te is the moment about te of the net areas to the left of te.   However, 
the moment of the resisting forces is small and can be neglected.   Then, let 
P be the effective value of the pressure during the time up to yielding, and 
compute xe as follows: 

xe = p te
2/2m 

from which, 

kxe = q = Pte
2k/2m = Zj^ptg2/!2 

whence 
v0.5 

(6) 
This equation is valid if the duration of the pressure t* is greater than 

te, which is always the case for atomic bombs.   If we designate the pressure 1 
at time te as pe, then p is given by the equation: i 

P = (2Pmax + Pe)/3 (?) 

For a complicated structure we have the problem of defining the resis- 
tance q.   Consider for example the structure in Fig. 8 consisting of several 
masses M each carrying an external force P and a resisting force Q applied 
by the structure.   If we consider Q as being uniformly distributed, in the 
same way as the initial value of P or p, the deflection pattern will change in 
shape as Q increases.  We can, however, take various values of Q and deter- 
mine the deflections.   We can then compute the stored energy as the sum- 
mation of the quantities 
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over all of the masses in the structure. 
We can then take the maximum deflection as a measure of the deforma- 

tion and with that and the parameter defining Q obtain the quantities needed 
for the analysis.   Alternatively we may take a pattern of displacement varied 
by multiplication by a parameter, find the corresponding individual values of 
Q and the stored energy, and by means of the plot at the bottom of Fig. 8 we 
can then define an effective or equivalent value of Q.   The shape of the dis- 
placement pattern used will also serve to define the effective value of P in 
the same way as Q. 

Empirical Relations 

If now we consider the work done in general by the pressure and by the 
resistance, we can see that these must be equal if the mass of the structure 
is initially at rest, because the structure also stops temporarily at its posi- 
tion of maximum displacement.  Also, if the pressure is applied very quickly 
as an impulse, the work done by the pressure is equal to the kinetic energy 
of motion of the structure after the external forces have ceased and before 
the internal resistances have been built up. 

With these concepts we can derive the following results: 

If the pressure is of infinitely long duration, the work done is equal to the 
internal energy stored at maximum deflection.   Then we have 

Pmaxxm = <l(xm " °-5xe) 

or 

•    Pmax/q = ! " °-5fa (8a) 

On the other hand, if the pressure lasts a very short time, the positive 
impulse of the pressure is 0.5pmax tj, and the initial kinetic energy of the 
mass is 

O-^Pmax1!2/2™ 

However, this is equal to the stored energy at maximum deflection, as before. 
Hence, with use of the relation 

m = (m/k) (kxe/xe) = q T 2/ 47i2xe 

one can derive the result 

Pmax/<l = (2^-1)0'5T^tl (8b) 

Now, equation (8b) applies when tj is very small and equation (8a) when 
ti is very large.   Trials with various combinations of the equations led to 
the following generally applicable result: 

Pmax/ q = (2ju - l)°-5T/jr tx + (1 - 0.5/// )/(l + O^T/^) (9) 

Equation (9) is in error by less than 5 percent over the whole range of 
values of tj from zero to infinity and ß from 1 to infinity.   It can therefore 
be used instead of Fig. 6. 

From equation (9) one can readily determing q if pmax is given, and 
conversely. 
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From equation (9) and the relations between pmax and p0 in equations (1) 
and (3) and Fig. 4, one can determine the value of q for any overpressure 
directly, as soon as the drag coefficient, the value of ß and that of T are 
known or can be estimated. 

It may be useful to have approximate expressions also for the time to 
reach maximum deflection.   These can be derived more or less logically, 
but only the resulting expressions are given here: 

For tmgreater than tj 

tm/4 = Pmax/2q + (0.091 T/tj + 0.25) / (2/i - l)0"5 (10) 

and for t    less than t. 

WH = 2 -   [<2 " W> " 2 (/J- 1) / (/i2+ 100)]   q/pmax (11) 

These expressions are accurate within 10 percent or better in general. 
With the values of tm, one can take account of other than triangular 

loading curves by selecting the best available approximation in the form of 
a triangle to the actual loading curve in the region up to tm. 

Finally we require expressions for the equivalent elasto-plastic resis- 
tance curves for use in cases such as that shown in Fig. 5(c).  Although an 
exact expression can be derived for the case where the loading is a pure 
impulse, this is not particularly useful in practical cases.   The following 
expression appears to work fairly well in general, however: 

q   + q 3 q       q 
q" = 22 2S3  .+   -22. ±m_ (l2a) 

2(l + tl/T)        4(1 + T/tj) 

Equation (12a) is applicable to the negative slope case shown in Fig. 5(c); for 
the positive slope condition the following simpler relation is applicable: 

q' = (qe + qm)/2 
(12b) 

Properties of Materials 

In making a preliminary design some estimate must be made of the values 
of the ductility factor to be used.   In general this is probably fairly low for 
wood structures, perhaps of the order of 5 to 10.   For steel structures, the 
factor is generally large, of the order of 50 to 100, except in such instances 
as may occur with welded connections at low temperatures where brittle frac- 
tures may be developed because of the speed of loading.   For reinforced con- 
crete the factor depends on the amount of reinforcement, and on the relative 
amounts of tensile and compressive steel, as well as on the way in which the 
compressive steel is tied together.   Crushing of concrete occurs in compres- 
sion at a fairly low strain, and causes a large reduction in moment carrying 
capacity.   Some data are available in Reference 7 on the behavior of rein- 
forced concrete beams up to the point of failure. 

From the results of the test data reported in Reference 7 it appears that 
the following rough rules may be used for preliminary estimates: 

The ductility factor for reinforced concrete beams is given approximately 
by the relation: 

//=0.1AC/(AS- A's) (13) 

where Ac is the area of the concrete, As that of the tensile steel, and A1 s that 
of the compressive steel, in the cross-section.   However,/* should not be 
taken greater than 30 for reinforced concrete, whatever equation (13) indicates. 
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For shear walls, the value of ß is likely to be quite small, much less than 
for framed structures.   Values of the order of 5 to 10 seem as large as should 
be taken for such elements as shear walls and diaphragms. 

The influence of the speed of loading on the yield point of mild steel should 
be considered.   What this influence is precisely on steel members in a struc- 
ture is difficult to evaluate.   Factors of the order of 20 to 30 percent higher 
than the static yield point seem reasonable, however, for members in the 
framing, and 30 to 50 percent higher for members in the wall or roof cover- 
ing. 

Conclusion 

This paper presents an approach which can be used for making preliminary 
designs of structures to resist blast loadings resulting from atomic bomb 
detonations.   The procedure involves the selection of the required yield resis- 
tance of the structure to resist the blast forces.   This yield resistance may 
be as much as twice the peak blast force for a very brittle structure subjected 
to a very long load pulse, or as little as 1/20 or less of the blast force for a 
ductile structure subjected to a very short load pulse. 

The duration of the pulse and the ductility of the structure must be consid- 
ered in the solution of the problem.   However, once the necessary yield resis- 
tance is determined, the rest of the design is essentially like the ordinary 
routine for static loads. 

After the preliminary design is made, better values of the period of the 
structure and of its ductility factor can be computed.   The procedure given 
herein can be applied again to determine whether the strength of the structure 
is adequate.   Generally no more refined calculation is necessary. 

For unusual cases, either with very brittle structures and unusual shapes 
of load pulses, or for any cases whatsoever, more refined calculations of 
structural response can be made.   However, these do not imply any better 
result in so far as the design of the structure is concerned. 

For those who seek more elaborate analyses, reference is made to item 8 
and to papers by the writer in items 2 and 3 of the list of References. 

By way of illustration let us consider the design load factors required for 
a typical framework of a building and for the resistant wall covering of the 
building for the same resultant pressure. 

The period of the wall covering is likely to be very short, of the order of 
0.025 sec, whereas the period of the frame is likely to be of the order of 
0.25 sec.   The duration of the blast force on both of the elements is of the 
order of 0.25 sec.   If the ductility factors for both elements are taken as 20, 
then from either Fig. 6 or Equation (9) one finds the result that the required 
static resistance is approximately 0.4 times the peak pressure for the frame 
and 0.9 for the wall panel.   This illustrates the general result that for wall 
panel elements which generally have a short period, the static resistance 
required is approximately equal to the peak blast force, whereas for frame 
members it is considerably less.   Therefore, for equal factors of safety 
these elements must be designed for very much different yield loads.   If they 
were designed for the same static equivalent load, the wall panels would be 
much weaker than the frame. 
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Fig.  1 -   Side-on Overpressure and Drag Pressure 
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Fig. 2 -   Net Pressures on Front and Rear Faces 
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Fig. 3 -     Net Translational Force 
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Fig. 5 -   Typical Resistance - Deflection Relations 
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Fig. 7 -   Acceleration - Time Relations 
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Fig. 8 -    Illustration of Analysis of Complex Structure 
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